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Abstract Interface plasmon excitations of superlattices with defects are investigated by the 
propagation matrix method. A dispersion relalion is obtained and is shown to be of sufficient 
generality. The dispersion curves of the local modes are shown to be dependent upon ihe 
thickness and the dielecuic consmt of the defect layer. The obtained formula generalizes some 
earlier m u I &  obtained by other authors. Several spcial cases, including the limiting cases 
of quantum-well layered suuctures, are discussed and a new mode similar to the Giuliami and 
Quinn type mode is deduced. 

1. Introduction 

Superlattices (SL) are artificially fabricated crystals of alternate layers of different materials 
A and B with thicknesses dl and 4. SL have recently attracted a lot of interest because of 
the technical advantages of depositing overlayers, such as molecular beam epitaxy (MBE). 
The study of excitations in SL produces new results [ 1-41. Different kinds of mode can 
be encountered in SL systems: bulk optical or acoustic modes which are propagative or 
confined in the layers, interface modes which are mainly localized at the boundaries between 
the constitutive layers and surface modes whose frequencies lie in the bulk-mode energy 
gaps. In the case of plasmons for a perfect sL which consists of alternating layers of 
material, where one or both constituents contain free caniers, interface plasmon modes 
between the constitutive layers on adjacent interfaces couple through long-range Coulomb 
forces. Through use of Bloch’s theorem, one then sees that a consequence of this coupling 
is a set of collective bulk plasmons of the whole SL structure characterized by a wavevector 
normal to the interfaces. Many researchers have done much work in the field of surface 
polaritons and surface plasmons [5-71. Giuliani and Quinn [8] investigated the surface 
plasmon modes ofa  SL consisting of a periodic array of two-dimensional electron-gas (ZDEG) 
layers embedded in a material of background dielectric constants E$. They showed the 
existence of surface plasmon modes (Gp modes) between two media of different dielectric 
constants if the wavevector is larger than some critical value. Bloss [9,lO] analysed the 
local plasmon modes between two semi-infinite SL and for the SL with one well doped with 
a different concentration. In analogy to the local phonon mode of vibrational lattices, they 
find that a local plasmon mode exists. Their discussions specialize the model to the case of 
the quantum-well widths going to zero, giving rise to the array of two-dimensional plasmon 
sheets. Surface plasmon modes of a SL consisting of metallic layers, which can be described 
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by a local three-dimensional dielectric function, separated by insulating layers have been 
considered by Camley and Mills [ 1 I]. Related problems of acoustic and magnetic excitations 
in semi-infinite periodic structures have been investigated by Camley et al [12, 131. As far 
as I know, in the frame of three-dimensional SL, the local modes similar to those discussed 
by Bloss have not been reported. In this paper, I give such a description by using the 
propagation matrix method The local plasmon modes of SL with defects are investigated 
and the dispersion relations in closed analytic form are obtained. In a previous paper [14], 
the author has demonstrated that the propagation method can be used to derive the vibration 
modes of any SL system. I will illustrate the point further in this paper. The results of Bloss 
are shown to be the limiting cases of the present paper. Some new modes are presented. 
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2. Method and computation 

2.1. The propagation method 

The propagation matrix method has been proposed for computing the excitations and 
transmission and reflection of waves for layer systems in a previous paper [ 141. The main 
ideas and formulae can be outlined as follows. 

For any layered system, according to the boundary conditions of excitations in which 
one is interested, one may construct a state vector which must be continuous across the 
interfaces. In this paper, we are interested in a P-polarized electromagnetic wave. Therefore, 
this state vector should be ( E T ,  H T ) ~ ,  with ET, HT standing for the tangential electric and 
magnetic fields at the interfaces. The propagation matrix of a film is defined as: 

SI = PS2 (1) 

where SI and S2 are the state vectors at either side of the film. 
For a P-polarized electromagnetic wave, the P matrix of a film is: 

cosh(ad) sinh(ad)&/a] 

where a’ = kz - &oz/cz. The matrix P of multilayers can be derived as 

01 sinh(ad)/s cosh(ord) 

where N is the total layer number. 
An intrinsic admittance Y is defined for bulk materials 

Y = ( H  x n ) / E T  (4) 

where n is the unit vector in the direction of propagation. For the P-polarized wave, we 
have Y = N d /  cos(9i) (9i is the incidence angle, N d  is the refractive index of the dielectric). 
We define the effective admittance of any layered medium as following the same relations. 

Assuming that the intrinsic admittance of a dielectric medium where the waves finally 
propagate is Y,, then the effective admittance of a multilayer system is 

yeff = (&I f ydPZd/(PIl + YdPI?.) (5 )  
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while for semi-infinite SL, I have derived [I41 

rea = (PII - exp(-aD))/S2 (6) 

where cosh(aD) = (Pll + P22)/2 and P is the propagation matrix of the unit cell of the 
SL. 

Therefore: 

where N/cos(qi) = YO is the intrinsic admittance of the dielecbic medium where the 
electromagnetic wave initially propagates. Yes is given by (5) for films and multilayers and 
by (6) for semi-infinite SL. Surface waves and bulk waves propagating along the surfaces 
and interfaces of any layer system correspond to: 

Yo + Yea = 0 (8) 

where YO is the intrinsic admittance of the dielectric cladding. Yea is the effective admittance 
of any layer system. Combining (5) with (8). we have: 

yOydPl2 + YOfIl + Yap22 + &I = 0 (9) 

where Yo = N0/cos(qi) = aO/eO. Y, = Nd/cos(qd) = ad/Ed for finite multilayers composed 
of N (where N is arbitrary) material. 

cos(qd) = $(pi, + P22) 

(PI1 - f d Y 0  + Pl2Y,z - P21 = 0 

(10) 

for infinite SL, and 

(11) 

for surface waves in semi-infinite SL, where the P matrix contains all the information about 
the layer system. In (10) and (1 I), P is the propagation manix of the unit cell of the SL. 
This scheme differs from the transfer matrix method [15-171 in that the T method can only 
be used to find solutions for infinite and semi-infinite SL while the P method can provide 
dispersion relations for arbitrary multilayer systems including finite and infinite SL. The P 
method can also be used to investigate the reflection and transmission of waves of any 
layered system. We have concluded [14], for any finite and infinite number of different 
layers of any materials in any configurations, that a large number of different kinds of 
modes can easily be investigated analytically and numerically using this scheme, showing 
the universality and generality of the method. 

2.2. P-polarization waves in superlanices 

For a SL . . .ABABAB.. ., the P matrix of a ‘unit cell’ of the SL is 

P = [  cosh(azd2) sinh(a2d&2/a2 COSh(aidi ) sinh(aidi)ei /ai ] ( 12) 
(YZ s ~ ~ ( ( Y z ~ z ) / E ~  cosh(azd2) (YI sinh(clldl)/El cosh(ald1) 
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with dl and el representing the thickness and dielectric constant of material A and dz and 
€ 2  of material B respectively. 
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aiE2 . 
UZEl 

Pi1 = cosh(aldl) cosh(~tzd2) + - smh(aldl) Sinh(a2di) 

PIT = cosh(aId1) sinh(aldz)ez/az + sinh(aidl) cosh(azdz)sl/ai 

41 = cosh(aId1) sinh(azdz)a2/ez + sinh(orld1) cosh(azdz)al/sj 

PZZ = cosh(aldl) sinh(azd2) + - sinh(aldl) sinh(azdz), 

(13) 

Wl . 
UlEZ 

Therefore, the dispersion relation of a SL is obtained as follows: 

cos(qL) = ;(PI1 + PZZ) 

where L is the SL periodicity. The dispersion of a surface mode localized in the near vicinity 
of the interface between material C and the semi-infinite SL is 

(fll - P&/E + Pl,ffZ/&2 - Pal = 0 
(15) 

exp(-pL) = PII + P I Z ~ / E  LR =- 0) 

where a and E are the decaying constant of the surface wave in the dielectric C and the 
dielectric constant of C respectively. When eB = E= = I, i.e. a semi-infinite stack of films 
from a surface active medium separated by material B with B cladding above, equation (15) 
reduces to the simple pairs of statements: 

~ I E Z  = zkazsl and exp(-BL) = P I ]  + ~ ~ P I ~ / E Z .  (16) 

We easily see that the upper sign corresponds to ,9 = (eldl + a2dz)/L1 an unacceptable 
value. However, if 

a I E 2  = -a’ZEt (17) 

we have p = (eldl -azdz)/L, which is acceptable if q d l  z azdz. The above results have 
been given by Camley and Mills [ I l l  for non-retardation regions, which reduces to 

62 = - E I  a d  6 = (dl - d2)/L. (18) 

2.3. Interface modes of superlattices with defects 

I further the research by investigating the SL . . .ABABA@ABAB.. . where in one unit cell, 
the constituent B is substituted by material C. The P matrix of material C is 

1 cosh(ad) sinh(ad)&/a 
I’ = [ sinh(cud)cu/s cosh(ad) ’ 

On both sides of material C is a semi-infinite SL composed of two components A and B. 
We assume that the semi-infinite SL have effective admittance Yen. Therefore from the 
multilayer dispersion relations in (9). we have 

Y:nsinh(ad)&/a + 2cosh(ad)Yeff + sinh(ad)a/s = 0 (20) 
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which reduces to 
cosh(ad) =F 1 (Y 

sinh(ad) E 
- ye, = 

i.e. 
Y, = - t a n h ( ~ d / 2 ) a / ~  (22) 

or 
Ye, = - c o t a n h ( ~ d / 2 ) ~ / ~ .  (23) 

Let us first consider the simple case of an isolated slab of the dielectric C [NI. When we 
ignore retardation and set Y,ff = -k/Evac = -k, then 

E ( @ + )  - tanh(kd/2) (24) 

E ( o - )  -~0tanh(kd/2) (25) 
which are the dispersions of a finite slab corresponding to the two modes of dielecbic- 
vacuum interface. The two modes couple to produce an odd- and even-parity pair split by 
interaction between the two surfaces. Equations (22) and (24) are even-parity modes and 
(23) and (25) are odd-parity modes. 

Then we consider the case of the symmetric SL-clad guide, i.e. SL with a defect layer. 
From (6) we obtain 

Y,2,PIZ + YefdPzz - Pll) - 4 1  = 0 (26) 
which is the implicit expression form of effective admittance of a semi-infinite SL. Thus 
substituting (13) into (26) we have the following general relations: 
E;[Y& sinh(a1dl) cosh(azdz) + Ye, sinh(orld1) sinh(a~d2)] 

+ EI[Y&E: + I]cosh(or~dl)sinh(~l~d~) 
- [ Y ~ ~ E z  sinh(azd2) - cosh(orzdz)] s inh(a~dt )s~  = 0 (27) 

with the requirement 0 c exp(-pL) = 91 - Y,aFjz < 1. 
Equation (27) is the main result of this paper. It describes the propagation of interface 

plasmon excitations in layered systems of semi-infinite SL or the SL with defects. In (27). 
Ye# = -1 / E O  for semi-infinite SL and 

COSh(ffd) T 1 (:) 
Yeff = sinh(ad) 

for SL with a defect layer. The wavenumber k is omitted from Yea. 
In the following computations, we ignore remdation. Assuming that EZ = E, we know 

that when d + 03, there exist surface modes provided that dl z d2. When d is finite, 
we may regard the structw as two identical SL coupled by the dielectric C. Suppose 
& I @ )  = 1 - o:/02 with op = 15 eV. This corresponds to a model of aluminium. In 
figure 1 curves 1 and 2 show the dispersion of the coupled surface modes, where dz = 0.Sdl; 
d = 1Sdt in curve 1, d = 0.75dl in curve 2. We find that there exist two local modes when 
d > dz and dl z 4. The smaller the separation between the SL, the larger the coupling. 
There are no local interface modes between the two coupled SL when d < dz and dl > 4. 
When dz z dl and d is finite, there may exist a local mode provided that d < dz. Curve 3 
shows the results when dz = 3dl and d = 2d1. 

Figure 2 shows the dispersion curves of the local modes when E # E* and d = 4. 
Curve 1 represents the symmetrical modes and curve 2 the antisymmetrical modes, where 
8 2  = 2, the upper two curves correspond to E = 3, and the lower curve to E = 1.5. There 
is a cut-off wavenumber for antisymmetrical modes. 
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EZ = 2. E = 3 for the upper two curves. E = 1.5 for the lower lwo cwes. Curve 1 is the 
symmetrical mode while curve 2 is the antisymmetrical mode. 

3. Discussion 

It is useful to break this section into several parts. We initially consider that the separation 
between the SL is zero and then tum to SL consisting of a periodic array of doped quantum 
wells. It is shown that the collective surface modes presented by Camley and Mills [ I  11 
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reduce to the famous Giuliani and Quinn plasmon modes (w modes) and OUT general 
dispersion relation (27) contains the local modes investigated by Bloss and some new 
modes in special cases. 

3.1. . . ABABAABABA. . . strucmre 

The above structure also corresponds to the two identical SL BABABA.. . separated by 2A. 
From (21), we know that Ye@ = 0 or Yeww. Substituting Y = 0 into (27). we obtain: 

E L  tanh(kd2) = -eztanh(kdl) and exp(-BL) = cosh(kd~)/cosh(kdz). (28) 

Equation (28) requires dl < dz. Set ~2 = 1 and & I  = 1 - &w2. then 

cu2 = &[I + tanh(kdl)/tanh(kd~)J. (29) 

This is the dispersion relation of the even-parity mode in the sense that the electrostatic 
potential is even under reflection through the midpoint of film 2A. When dz >> dl, it is an 
optic-lie mode, kd -+ 0, w = cup. 

In (27) setting Yes -+ w, we obtain 

el tanh(kd1) = -EZ tanb(kd2) (30) 

which also requires dl < dz. Set E I  = 1 and €1 = 1 - &w2, then 

0’ U&’[ 1 + tanh(kdz)/ tanh(kd1)l. (31) 

The electrostatic potential has odd parity under reflection through the midpoint of the film. 
When d2 >> dl, it is an acoustic-like mode, kd + 0, w = 0. These results are similar 
to those of Fuchs and Kliewer 1181 for the interface electrostatic excitations in isolated 
slabs. In the long-wavelength limit (compared to the interatomic distances) the interface 
vibrations of an ionic slab are composed of two surface modes: one symmetrical and one 
antisymmetrical, decaying exponentially into the interior of the slab. For dz >> dl, our 
results correspond exactly to an isolated slab result. Setting dz = mdl when m decreases 
from a large value, the frequency of the optic-like mode will decrease and that the acoustic- 
like mode will increase in the small-wavenumber range, as shown in figure 3, which shows 
the effect of layered structure on a slab. The smaller m (m z 1) is, the smaller the gap 
between two modes. 

3.2. Semi-infinite array of 2DEC 

Many papers [8. 19-22] have investigated the plasmon modes of a semi-infinite array of 
layers located at z = la, where 1 = 0, 1 , 2 . .  .. These layers are embedded in a medium 
of background dielectric constant es and the space z < 0 is occupied by an insulator of 
dielectric constant EO. A new type of surface wave was reported by Giuliani and Quinn [SI. 
The GQ modes exist only for cS # EO and for wavelengths shorter than a critical value. This 
mode can be easily derived from (27). When A is a two dimensional electron gas, kdl -+ 0 
but we set 

where o$ = 41rnez/modl, a&, = 2ane’k/m~, E = e2. (We assume that material A is 
simply material B with doping.) 
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Figure 3. The vibration modes of a slab clad both sides by iaycred svuctuuw, showing the 
effect of a layxed s t ~ c t u e  on a slab. 

For a semi-infinite SL with insulator above, in (27) setting Yen = - ] / E O ,  we obtain the 
following explicit expressions: 

(32) 
2&[~&0tanh(kdi) - ~ 2 ~ 0 1  

0 2  = (4 - 4)  
Equation (32) is precisely the Same as the dispersion of the GQ mode [8,19]. 

If we say B is a 2DMi Many papers [8,19-22] have investigated the plasmon modes of 
a semi-infinite array of and A is the bulk background dielectric medium with a metal or 
dipole active medium above, i.e. the first two-dimensional electron layer occurs a distance 
of the SL period from the interface, then Yes = -11~0. From (27) we have 

(33) 
2 - 20$,[~:~0tanh(kdil + EIEOI 

0 -  
(E: - E:) 

with exp(-pL) = cosh(kd1) + Eosinh(kdl)/ei, i.e. equation (33) requires EO&, c 0 and 
M(kd1 /2 )  < IEO/EII. 

The mode differs from the GQ mode in that it exists only for wavevectors smaller than 
some critical wavevector depending upon the ratio of the dielectric constant when IEOI  c 181 I. 
When \EO\ > I E I I  then we have 

1 IEOl +E l  

d lEol - & I  
K'=-ln- 

and the mode exists only when k > k*. In the limit of strong coupling of the ZDEG, kd, -P 0, 
we have: 

0 2  = W;E:/(E: - 4) (34) 
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which is the collective charge-density oscillation modes of the ZDEG SL and in the limit 
of weak coupling, kd + 00, there exists a mode when EO = -el, which is the interface 
mode between. dielectric media EO and e l .  In general cases, the mode is the coupling of the 
interface mode at the boundary of EO and E ,  with the vibration modes of the ZDEG SL. 

3.3. Coupled quannrm-well superlattices (QWS) 

Bloss 19, IO] has recently investigated the coupled Qws in detail. Assume dz -+ 0 and 
keep k d m  = -(20~,/w2)&~. The sbucture tums out to be a layered ZDEG Many papers 
[8,19-221 have investigated the plasmon modes of a semi-infinite array of while the defect 
can be a quantum well doped with a different density of electrons. Thus from (21), we have 

Therefore from (27) we obtained the dispersion equations of an infinite periodic array of 
quantum wells where all the wells are. doped with the same electron density n except for 
one well with the density no: ($r - 2 ($) cotanh(kd2) - 

*2D OZD 

i.e. 

(36) 

Equation (36) is the same as equation (17) of [IO]. It is found that when no << n,  the local 
mode is acoustic-like with velocity rather lower. 

When material C is a bulk medium with dielectric constant E,  thickness d and dl + 0, 
but keeping EI  sinh(kdl) = -(2w&,/w2)~2, the structure is a coupled QWS separated by a 
bulk medium. From (27), we have: 

(oz/w&,) = cotanh(kd2) f ,/cotanh(tdz)z + no - (; no - 2). 
n 

where Yea is given by (22) or (23). 
When E = E ~ .  we have 

138) 

(39) 

These are the same as (32) of 191. It should be noted that in this case, there are no dielectnic 
constant discontinuities and these modes have no analogue in homogeneous media, 

w 2 -  - ~,sinh2(kd/2)[-cotanh(kdz) 2 . + cotanh(kd/Z)] 

wZ = &~0~h~(kd/2)[cotanh(kd,) - tmh(kd/2)]. 
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4. Conclusions 

The general dispersion relations of SL with defects are derived by using the propagation 
matrix method. Explicit relations are obtained and are shown to be of sufficient generality. 
The results of some current papers including those of Bloss, Giuliani et a! and Camley et 
al are the limiting cases of this paper. The dispersion curves are computed. It is found 
that two modes exist corresponding to a symmetrical and antisymmebical combination of 
plasmon states of the individual SL. The modes exist only when d > d2 and dl > 4; or 
d c d2 and dl c d2 for E = 82. Two special limits are discussed: (i) d = 0 (two identical 
SL of zero separation) there exist two modes corresponding to an acoustic-like mode and an 
optic-like mode when d2 >> d l ,  which differs from two coupled semi-infinite SL of quantum 
wells [9]. In the latter case, only the symmetric eigenstate exists. (ii) Semi-infinite QWS 
and coupled QWS are discussed. A new mode similar to the GQ-type mode is deduced 
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